你可能打错字了.是维尔斯特拉斯 卡尔·特奥多尔·威廉·魏尔施特拉斯(Karl Theodor Wilhelm Weierstraß,姓氏可写作Weierstrass,1815年10月31日——1897年2月19日),德国数学家,被誉为“现代分析之父”。生于威斯特法伦(Westfalen)的奥斯滕费尔德(Ostenfelde)(今德国),逝于柏林。 卡尔·魏尔施特拉斯的父亲是威廉·魏尔施特拉斯(Wilhem Weierstrass),任政府官员;母亲是特奥多拉·冯德福斯特(Theodora Vonderforst)。他在文理中学(Gymnasium)学习时对数学开始感到兴趣,但他中学毕业后进入波恩大学准备在政府谋职。他要学习的是法律、经济和金融,违背了他读数学的心愿。他解决矛盾的方法是不留心于指定课业,私下继续自学数学,结果他没有学位就离开了大学。他父亲在明斯特一家师训学校为他找到一个位子,他之后也得以注册为该市教师。他尺族渗在这段学习中上了克里斯托夫·古德曼(Christoph Gudermann)的课,对椭圆函数萌生兴趣。 1850年后魏尔施特拉斯患病了很久,但仍然发表论文,这些论文使他获得声誉。1857年柏林大学给予他一个数学教席。 1854年,他发表了一本关於发展阿贝尔(Abel)函数论成果的专论——《关於阿贝尔函数论》公诸於世之后,根据他的学术成就,哥尼斯堡大学授予他名誉博士学位。1856年由库默尔推荐成为柏林大学(Freie Universität Berlin)助理教授,1865年晋升为教授。生前,他的研究结果大都是向学生讲授传播的。1886年,他出版了《函数论论文集》。虽然他的著作不多,但却发表了最有影响的论文。 维尔斯特拉斯的主要贡献在数学分析、解析函数论、变分法、微分几何学和缐性代数等方面。他是把严格的论证引进分析学的一位大师。他的批判精神对19世纪数学产生很大影响。他在严格的逻辑基础上建立了实数理论,用单调有界序列来定义无理数,给出了数集的上、下极限,极限点和连续函数等严格定义,还在1861年构造了一个著名的处处不可微的连续函数,为分析学的算术化做出重要贡献。他完成了由柯西(Cauchy)引进的用不等式描述穗举的极限定义(所谓ε-δ定义)。在解析函数论中,维尔斯特拉斯也有重要贡献。他建立了解析函数的幂级数展开定理和多元解析函数基本理论,得到代数函数论及阿贝尔积分中的某些结果。在变分法中,他给出了带有参数的函数的变分结构,研究了变分问题的间断解。在微分几何中,他研究了测地缐和最小曲面。在缐性代数中,建立了初等因子理论并用来化简矩阵。他还是一位杰出的教育家,一生培养了大批有成就的数学人才,其中著名的有柯瓦列夫斯卡娅、施瓦兹、米塔—列夫勒、朔特基、富克斯等 少年数学天才 1826年9月17日,在德国汉诺威的布列斯伦茨,黎曼(1826-1866)出生在一个乡下牧师之家,是6个孩子中的次子。 黎曼从小酷爱数学。他6岁时开始学习算术,并陵脊显现出他的数学天才。他不仅能解决所有留给他的数学问题,而且还经常提一些问题来捉弄他的兄弟姐妹。10岁时他跟一位职业教师学习高级算数和几何,很快便超过了老师,常常对一些问题能做出更好的答案。 黎曼14岁时到汉诺威市上中学。由于经济拮据,他总是靠步行奔波于汉诺威市与乡间小村庄之间。当然他更没钱去买参考书。幸运的是中学校长及时地发现了他的数学才能,考虑到他经济上的困难,校长特许黎曼可以从自己私人藏书室里借阅数学书籍。在校长的推荐下,黎曼借了一部数学家勒让德的《数论》,这是一部共859页的4大本的名著。黎曼十分珍惜这种读书机会,他如饥似渴地自学起来,6天之后,黎曼便学完并归还了这本书。校长问他:“你读了多少?”黎曼说:“这是一本了不起的书,我已经掌握了它。”几个月之后,校长就这本书的内容考他。黎曼对答如流,并且回答得很全面。利用校长的藏书,黎曼还抓紧时间很快地自学了大数学家欧拉的著作,由此掌握了微积分及其分支。黎曼不仅从欧拉的著作中学到了数学知识,还学到了欧拉研究数学的技巧。 大学生涯 19岁时,黎曼进入格丁根大学学习,为了在经济上帮助家庭以尽快找到一个有报酬的工作,他先攻读哲学和神学,但是,除了这两门课程以外,他也去听数学、物理学课程。他听了斯特恩关于方程论和定积分、高斯关于最小二乘法以及戈尔德斯米特关于地磁学的数学讲座,对数学专业产生了难以割舍的兴趣。 黎曼向父亲讲述了这一切,请求允许自己改学数学专业。父亲由衷地同意了他的请求。黎曼极为高兴,并深深地感激父亲。 1847年,为了师从更多的大师,黎曼转学到柏林大学,就学于大数学家雅可比、狄利克雷、斯泰纳和艾森斯坦门下。他从雅可比那里学到高等力学和高等代数,从狄利克雷那里学到数论和分析学,从斯泰纳那里学到现代几何,从文森斯坦那里学到椭圆函数论。 在此期间,他极为勤奋,甚至放假期间也不休息。1847年秋假,黎曼找到几份巴黎科学院《院刊》,上面载有数学家柯西新发表的关于单复变量解析函数的论文,他一眼便看出这是一种新数学理论,于是一连几个星期闭门不出,潜心研究柯西的论文,并酝酿出他在这个专题上的新见解,为4年后撰写博士论文“单复变量函数的一般理论的基础”奠定了基础。 黎曼不仅认真研读大师的学术专著,而且虚心地向大师求教。有一次,狄利克雷来格丁根度假,黎曼趁此机会向他求教数学问题,并将自己未定稿论文交给他,请他提意见。狄利克雷被黎曼的谦虚、真诚和天才迷住了。他与黎曼长谈了两个小时,给黎曼的论文提了不少意见,给黎曼正在研究的课题作了许多指点。黎曼深感受益匪浅,他说没有狄利克雷的指点,他将不得不在图书馆里做好几天的吃力研究。 生活虽然清贫,但学习极为勤勉,这使得黎曼在大学毕业时获得了丰硕的成果。1851年底,黎曼将其博士论文呈交给大数学家高斯审阅。高斯在看了论文之后兴奋不已,对黎曼的论文作出了高度评价,这对高斯来说是罕见的。高斯评语道:“黎曼先生交来的论文提供了令人信服的证据,说明作者对该文所论述的这一问题作了全面深入的研究,说明作者具有创造性的、活跃的、真正的数学头脑,具有灿烂丰富的创造力。” 贫困中奋进 1852年初,黎曼凭借优异的学术表现取得了博士学位,并留在了格丁根大学。十九世纪中叶的德国,科学几乎与国家的经济全然无关。大学的设立仅在训练律师、医师、教师和传教士士,以及提供贵族子弟和富家子弟渡过引人侧目及受尊敬的岁月的场所。只有正教授才可以领政府的津贴,并且可教授正规标准课程,这些课程都是一些基础科目,上课的学生多,因此教授收到的学费也就多了,这就是为什么当时课程水准低落的原因,因为如果课程太难,就没有办法收到许多学生,从而影响到教授们的收入,毕竟贵族子弟和富家子弟上大学的目的并非真心向学。讲师们则没有政府津贴并且轮不到教基本正规课程的机会,全然靠来听课的学生的学费维生,通常,听课的学生不会多,因此收入也就相当微薄,生活非常困苦。担任讲师是成为正教授的必经途径。但是却没有明文规定什么时候能将一位讲师升等为教授,为了照顾特别值得重视的学者而却没有正教授的空缺时,政府可任命他为“客座教授”,使他具有教基本正规课程的资格,增多他的收入,但是这个任命附有条件,言明政府不付任何津贴。因此,在担任讲师期间,黎曼没有任何自主的生活费来源,生活依旧贫穷。 但黎曼不顾生活上的贫困,仍然把全部精力投向数学。他认为只要能够勉强维持生活,能够让他研究数学,他就心满意足了。他从不因经济上的拈据而感到沮丧。他一方面积极准备“无薪讲师”的就职演讲论文,另一方面认真从事数学物理方面的研究工作。他的就职论文具有相当的难度。当初为了确定论文的选题,他向高斯提交了3个题目,以便让高斯在其中选定一个。其中第3个题目是涉及几何基础的,这个题目黎曼当时并没有多少案头准备工作,因此黎曼从心底里希望高斯不要选中它。可是,高斯对第3个题目却深有研究,他已思考这个问题达60年之久。出于想看看黎曼对这个深奥的问题会做些什么样的创造性工作,高斯指定第3个题目作为黎曼就职演讲论文的题目。 事后,黎曼在向父亲谈起这件事时说,“所以我又处在绝境中了”、“我不得不做出这个题目”。 对数学物理研究,黎曼也具有无限的热情,他当时曾对人说:“我对于把一切与物理规律结合起来的数学研究非常入迷。”“我通过对电、光、磁等之间联系的总研究,发现了对这个现象的解释。这件事对我很重要,因为这是我第一次能够把我的工作应用到未知的现象上。”这两项研究在当时都是高水平的,因而也是极困难的。黎曼不顾生活清贫、营养不良,超负荷地忘我工作,长时期过四度而紧张地思索,以致他常常体力衰竭,甚至病倒。一旦身体稍有复原,他又继续研究。功夫不负有心人。1854年6月10日,黎曼以“关于构成几何基础的假设”论文作了就职演讲,受到了与会数学家们的认可和好评。高斯听完之后大为惊异,感到这个年轻人处理这个难题非常之好,他赞不绝口。黎曼的这篇论文被人们认为是19世纪数学史上的杰作之一。 1855年格丁根大学开始给黎曼发薪金,但相当的低。一年仅相当于200美元。这一年黎曼29岁,他家里遭到巨大的不幸,父亲和一个妹妹相继去世,原来依靠父亲生活的3个妹妹失去了生活来源。于是黎曼和他的哥哥两人挑起了照顾3个妹妹生活的担子。黎曼时时为一家人的生活感到焦虑。1857年黎曼一年的薪金被加到相当于300美元的水平。由于收入不多,又要照顾3个妹妹,生活担子重,黎曼连自己的婚姻大事都不敢考虑。然而就在这一年,不幸又从天而降,黎曼的哥哥又去世了。这对黎曼来说如同雪上加霜,照料3个妹妹生活的担子全部落在他一人的肩上。从1855年到1859年这5年中,经济拮据、生活清贫一直困绕着黎曼,有时一家甚至陷入对口粮都需要算计的地步。就是在这种情况下,黎曼仍不顾物质生活的贫乏,全身心地投入到数学研究工作之中,在科学的崎岖小道上艰苦奋斗,并获得了令人惊异的成就。他在数学上的许多重要成果都是在这个时期内完成的。他对阿贝尔积分和阿贝尔函数的研究,开创了现代代数几何;他首创用复解析函数研究数论问题,开创了现代意义的解析数论;他对超几何级数的研究,推动了数学物理和微分方程理论的发展。随着研究成果的问世,黎曼在数学界的学术声望迅速提高。他受到许多世界著名数学家的赞扬,获得了一个科学家通常可能得到的最高荣誉。 大师之死 1859年黎曼33岁时,高斯去世。他被任命为格丁根大学正教授,成为继狄利克雷之后高斯的第二个继任者。这时黎曼的生活才开始得到改善,才开始考虑个人的婚姻问题,并在36岁时与朋友的妹妹结了婚。一年后,他的女儿出生在比萨。 但是,长时期清贫的生活、过度的操劳、发奋的研究,使得黎曼身体虚弱、精力衰竭。1862年黎曼患了胸膜炎,不久又患了肺病,一年后又患了黄疽病。在病魔缠身之际,只要有一些力气,黎曼仍坚持数学研究工作。虽然这个时期黎曼积极就医和疗养,但因病入膏盲终无疗效。1866年7月20日,黎曼那颗纯洁、高尚的心停止了跳动。他过早地离开了人世,也过早地离开了数学,终年仅40岁。 黎曼是数学史上最具独创性精神的数学家之一,他在众多的数学领域里作出了许多奠基性和创造性的研究工作:他从几何方向开创了复变函数论;是现代意义的解析数论的奠基者;他亲手建立了黎曼几何,是组合拓扑学的开拓者。他对微积分的严格处理作出了重要贡献;在数学物理和微分方程等领域内也成果丰硕。1859年,黎曼被选为柏林科学院通讯院士,1866年他被选为法国巴黎科学院通讯院士和英国皇家学会国外会员。 黎曼的英年早逝是德国数学界乃至全世界数学界的遗憾!但是他所留给数学界的,在他少量的已出版的论文集中,已有太多的丰富的概念,至今还未被后世数学家研究殆尽。 高斯 包含人物[1]和物理单位[2] [1]人物: 卡尔.弗里德里希.高斯(Carl Friedrich Gauß,1777.4.30~1855.2.23),德国数学家、物理学家和天文学家,出生于德国布伦兹维克的一个贫苦家庭。父亲格尔恰尔德·迪德里赫先后当过护堤工、泥瓦匠和园丁,第一个妻子和他生活了10多年后因病去世,没有为他留下孩子。迪德里赫后来娶了罗捷雅,第二年他们的孩子高斯出生了,这是他们唯一的孩子。父亲对高斯要求极为严厉,甚至有些过分,常常喜欢凭自己的经验为年幼的高斯规划人生。高斯尊重他的父亲,并且秉承了其父诚实、谨慎的性格。1806年迪德里赫逝世,此时高斯已经做出了许多划时代的成就。 在成长过程中,幼年的高斯主要是力于母亲和舅舅。高斯的外祖父是一位石匠,30岁那年死于肺结核,留下了两个孩子:高斯的母亲罗捷雅、舅舅弗利德里希(Friederich)。弗利德里希富有智慧,为人热情而又聪明能干投身于纺织贸易颇有成就。他发现姐姐的儿子聪明伶利,因此他就把一部分精力花在这位小天才身上,用生动活泼的方式开发高斯的智力。若干年后,已成年并成就显赫的高斯回想起舅舅为他所做的一切,深感对他成才之重要,他想到舅舅多产的思想,不无伤感地说,舅舅去世使“我们失去了一位天才”。正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁或者泥瓦匠。 在数学史上,很少有人象高斯一样很幸运地有一位鼎力支持他成才的母亲。罗捷雅直到34岁才出嫁,生下高斯时已有35岁了。他性格坚强、聪明贤慧、富有幽默感。高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出,这已经超出了一个孩子能被许可的范围。当丈夫为此训斥孩子时,他总是支持高斯,坚决反对顽固的丈夫想把儿子变得跟他一样无知。 罗捷雅真诚地希望儿子能干出一番伟大的事业,对高斯的才华极为珍视。然而,他也不敢轻易地让儿子投入当时尚不能养家糊口的数学研究中。在高斯19岁那年,尽管他已做出了许多伟大的数学成就,但她仍向数学界的朋友W.波尔约(W.Bolyai,非欧几何创立者之一J.波尔约之父)问道:高斯将来会有出息吗?W.波尔约说她的儿子将是“欧洲最伟大的数学家”,为此她激动得热泪盈眶。 7岁那年,高斯第一次上学了。头两年没有什么特殊的事情。1787年高斯10岁,他进入了学习数学的班次,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学教师是布特纳(Buttner),他对高斯的成长也起了一定作用。 在全世界广为流传的一则故事说,高斯最出名的故事就是他十岁时,小学老师出了一道算术难题:“计算1+2+3…+100=?” 。这可难为初学算术的学生,但是高斯却在几秒后将答案解了出来,他利用算术级数(等差级数)的对称性,然后就像求得一般算术级数和的过程一样,把数目一对对的凑在一起:1+100,2+ 99,3+98,……49+52,50+51 而这样的组合有50组,所以答案很快的就可以求出是: 101×50=5050。不过,这很可能是一个不真实的传说。据对高斯素有研究的著名数学史家E·T·贝尔(E.T.Bell)考证,布特纳当时给孩子们出的是一道更难的加法题:81297+81495+81693+…+100899。 当然,这也是一个等差数列的求和问题(公差为198,项数为100)。当布特纳刚一写完时,高斯也算完并把写有答案的小石板交了上去。E·T·贝尔写道,高斯晚年经常喜欢向人们谈论这件事,说当时只有他写的答案是正确的,而其他的孩子们都错了。高斯没有明确地讲过,他是用什么方法那么快就解决了这个问题。数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法。一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常。贝尔根据高斯本人晚年的说法而叙述的史实,应该是比较可信的。而且,这更能反映高斯从小就注意把握更本质的数学方法这一特点。 高斯的计算能力,更主要地是高斯独到的数学方法、非同一般的创造力,使布特纳对他刮目相看。他特意从汉堡买了最好的算术书送给高斯,说:“你已经超过了我,我没有什么东西可以教你了。”接着,高斯与布特纳的助手巴特尔斯(J.M.Bartels)建立了真诚的友谊,直到巴特尔斯逝世。他们一起学习,互相帮助,高斯由此开始了真正的数学研究。 1788年,11岁的高斯进入了文科学校,他在新的学校里,所有的功课都极好,特别是古典文学、数学尤为突出。经过巴特尔斯等人的引荐,布伦兹维克公爵召见了14岁的高斯。这位朴实、聪明但家境贫寒的孩子赢得了公爵的同情,公爵慷慨地提出愿意作高斯的资助人,让他继续学习。 布伦兹维克公爵在高斯的成才过程中起了举足轻重的作用。不仅如此,这种作用实际上反映了欧洲近代科学发展的一种模式,表明在科学研究社会化以前,私人的资助是科学发展的重要推动因素之一。高斯正处于私人资助科学研究与科学研究社会化的转变时期。 1792年,高斯进入布伦兹维克的卡罗琳学院继续学习。1795年,公爵又为他支付各种费用,送他入德国著名的哥丁根大学,这样就使得高斯得以按照自己的理想,勤奋地学习和开始进行创造性的研究。1799年,高斯完成了博士论文,回到家乡布伦兹维克,正当他为自己的前途、生计担忧而病倒时----虽然他的博士论文顺利通过了,已被授予博士学位,同时获得了讲师职位,但他没有能成功地吸引学生,因此只能回老家,又是公爵伸手救援他。公爵为高斯付诸了长篇博士论文的印刷费用,送给他一幢公寓,又为他印刷了《算术研究》,使该书得以在1801年问世;还负担了高斯的所有生活费用。所有这一切,令高斯十分感动。他在博士论文和《算术研究》中,写下了情真意切的献词:“献给大公”,“你的仁慈,将我从所有烦恼中解放出来,使我能从事这种独特的研究”。 1806年,公爵在抵抗拿破仑统帅的法军时不幸阵亡,这给高斯以沉重打击。他悲痛欲绝,长时间对法国人有一种深深的敌意。大公的去世给高斯带来了经济上的拮据,德国处于法军奴役下的不幸,以及第一个妻子的逝世,这一切使得高斯有些心灰意冷,但他是位刚强的汉子,从不向他人透露自己的窘况,也不让朋友安慰自己的不幸。人们只是在19世纪整理他的未公布于众的数学手稿时才得知他那时的心态。在一篇讨论椭圆函数的手搞中,突然插入了一段细微的铅笔字:“对我来说,死去也比这样的生活更好受些。” 慷慨、仁慈的资助人去世了,因此高斯必须找一份合适的工作,以维持一家人的生计。由于高斯在天文学、数学方面的杰出工作,他的名声从1802年起就已开始传遍欧洲。彼得堡科学院不断暗示他,自从1783年欧拉去世后,欧拉在彼得堡科学院的位置一直在等待着象高斯这样的天才。公爵在世时坚决劝阻高斯去俄国,他甚至愿意给高斯增加薪金,为他建立天文台。现在,高斯又在他的生活中面临着新的选择。 为了不使德国失去最伟大的天才,德国著名学者洪堡(B.A.Von Humboldt)联合其他学者和政界人物,为高斯争取到了享有特权的哥丁根大学数学和天文学教授,以及哥丁根天文台台长的职位。1807年,高斯赴哥丁根就职,全家迁居于此。从这时起,除了一次到柏林去参加科学会议以外,他一直住在哥丁根。洪堡等人的努力,不仅使得高斯一家人有了舒适的生活环境,高斯本人可以充分发挥其天才,而且为哥丁根数学学派的创立、德国成为世界科学中心和数学中心创造了条件。同时,这也标志着科学研究社会化的一个良好开端。 高斯的学术地位,历来为人们推崇得很高。他有“数学王子”、“数学家之王”的美称、被认为是人类有史以来“最伟大的三位(或四位)数学家之一”(阿基米德、牛顿、高斯或加上欧拉)。人们还称赞高斯是“人类的骄傲”。天才、早熟、高产、创造力不衰、……,人类智力领域的几乎所有褒奖之词,对于高斯都不过份。 高斯的研究领域,遍及纯粹数学和应用数学的各个领域,并且开辟了许多新的数学领域,从最抽象的代数数论到内蕴几何学,都留下了他的足迹。从研究风格、方法乃至所取得的具体成就方面,他都是18----19世纪之交的中坚人物。如果我们把18世纪的数学家想象为一系列的高山峻岭,那么最后一个令人肃然起敬的巅峰就是高斯;如果把19世纪的数学家想象为一条条江河,那么其源头就是高斯。 虽然数学研究、科学工作在18世纪末仍然没有成为令人羡慕的职业,但高斯依然生逢其时,因为在他快步入而立之年之际,欧洲资本主义的发展,使各国政府都开始重视科学研究。随着拿破仑对法国科学家、科学研究的重视,俄国的沙皇以及欧洲的许多君主也开始对科学家、科学研究刮目相看,科学研究的社会化进程不断加快,科学的地位不断提高。作为当时最伟大的科学家,高斯获得了不少的荣誉,许多世界著名的科学泰斗都把高斯当作自己的老师。 1802年,高斯被俄国彼得堡科学院选为通讯院士、喀山大学教授;1877年,丹麦政府任命他为科学顾问,这一年,德国汉诺威政府也聘请他担任政府科学顾问。 高斯的一生,是典型的学者的一生。他始终保持着农家的俭朴,使人难以想象他是一位大教授,世界上最伟大的数学家。他先后结过两次婚,几个孩子曾使他颇为恼火。不过,这些对他的科学创造影响不太大。在获得崇高声誉、德国数学开始主宰世界之时,一代天骄走完了生命旅程。 在处理相片的软件 photoshop 中,有一种菜单叫高斯模糊,这种功能对模糊一些不必要的地方很有作用。高斯(Gauss 1777~1855)生於Brunswick,位於现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。 高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,终於发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。 老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什麽东西可以教高斯了。 1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。 1791年高斯终於找到了资助人--布伦斯维克公爵费迪南(Braunschweig),答应尽一切可能帮助他,高斯的父亲再也没有反对的理由。隔年,高斯进入Braunschweig学院。这年,高斯十五岁。在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的「二次互逆定理」(Law of Quadratic Reciprocity)、质数分布定理(prime numer theorem)、及算术几何平均(arithmetic-geometric mean)。 1795年高斯进入哥廷根(G?ttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。 希腊时代的数学家已经知道如何用尺规作出正 2m×3n×5p 边形,其中 m 是正整数,而 n 和 p 只能是0或1。但是对於正七、九、十一边形的尺规作图法,两千年来都没有人知道。而高斯证明了: 一个正 n 边形可以尺规作图若且唯若 n 是以下两种形式之一: 1、n = 2k,k = 2, 3,… 2、n = 2k × (几个不同「费马质数」的乘积),k = 0,1,2,… 费马质数是形如 Fk = 22k 的质数。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是质数。高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。 1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理: 任一多项式都有(复数)根。这结果称为「代数学基本定理」(Fundamental Theorem of Algebra)。 事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。 在1801年,高斯二十四岁时出版了《算学研究》(Disquesitiones Arithmeticae),这本书以拉丁文写成,原来有八章,由於钱不够,只好印七章。 这本书除了第七章介绍代数基本定理外,其余都是数论,可以说是数论第一本有系统的着作,高斯第一次介绍「同余」(Congruent)的概念。「二次互逆定理」也在其中。 二十四岁开始,高斯放弃在纯数学的研究,作了几年天文学的研究。 当时的天文界正在为火星和木星间庞大的间隙烦恼不已,认为火星和木星间应该还有行星未被发现。在1801年,意大利的