迪士尼的机器人,不管剩几条腿 ( n>0 ) ,都能学会走路。
那么,是怎么学的?
研究团队不用模拟器,直接在硬件上修炼深度强化学习 ( DRL ) 的策略。
真实世界,或许比模拟器要单调一些。不过,有物理支持的经验,可能更加珍贵。
除了有清新脱俗的训练环境,这只机器人,也并不是一只机器人而已。
想要几条腿,问过机器人吗?
机器人的腿是模块化的,就是说,你想给它装上一条、两条、三条腿,都可以。
嫌腿太多,拔掉一些也可以。?反正只要有腿,机器人还可以重新学走路。
另外,机器人的腿还分三种,运动方式各不相同——
在分别介绍之前,先给各位一些方向感。
A腿,Roll-Pitch,横轴加纵轴。
B腿,Yaw-Pitch,竖轴加纵轴。
C腿,Roll-Yaw-Pitch,横轴加竖轴加纵轴。
于是,C腿比另外两条腿粗壮一些,似乎也可以理解了。
如果按最多能装六条腿来算,一共可以拼出多少种不同的机器人?
这样一来,即便不是模拟器,也算多姿多彩了。
两种DRL同步走
由于,不知道机器人什么时候,就会多条胳膊少条腿,迪士尼团队准备了两种深度强化学习算法。
一是TRPO ( 信赖域策略优化 ) 算法,沿用既定策略 ( On-Policy ) 的批量学习方法,适合优化大型非线性的策略。
二是DDPG ( 深度确定性策略梯度 ) 算法,用“演员-评论家 ( Actor-Critic ) ”的方法,优化策略。?
不同的算法,不同的姿势
那么,在三次元学习过程中优化的策略,有多优秀?
按照腿的数量,分别来看一下。
一条腿
图中下者,是用TRPO学习完毕的A腿,与没有学过的A腿相比,走路姿势已经明显不同,速度也真的加快了一点点。
两条腿
这是两条B腿在TRPO熏陶之下形成的姿势,轻快地触地,轻快地弹起。
这同样是两条B腿,但算法换成了DDPG,姿势又完全不同了,好像慵懒地向前翻滚。
三条腿
这次,机器人长了三条B腿。有了TRPO的加成,它用欢脱地节奏点着地,和双腿TRPO的操作很相似。
总体看上去,用TRPO训练过后,机器人会比较活跃,用DDPG修炼之后,机器人就有了佛系属性。
不管它有怎样的个性,研究人员都很开心。毕竟,那表示深度强化学习算法,是有效的。一看就知道,是谁带出的徒弟。
来源:量子位
免责声明:本文系网络转载,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容!本文内容为原作者观点,并不代表本公众号赞同其观点和对其真实性负责。
从人工智能到智能边缘计算、智能云到技术落地案例
这里一应俱全,我们共同探讨 中国AI的未来
立即扫码,抢限时免费门票!