古代数学小故事(通用28篇)
数学,是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。下面是古代数学小故事,请参考!
大约1500年前,欧洲的数学家们是不知道用“0”的。他们使用罗马数字。罗马数字是用几个表示数的符号,按照一定规则,把它们组合起来表示不同的数目。在这种数字的运用里,不需要“0”这个数字。
而在当时,罗马帝国有一位学者从印度记数法里发现了“0”这个符号。他发现,有了“0”,进行数学运算方便极了,他非常高兴,还把印度人使用“0”的方法向大家做了介绍。过了一段时间,这件事被当时的罗马教皇知道了。当时是欧洲的中世纪,教会的势力非常大,罗马教皇的权利更是远远超过皇帝。教皇非常恼怒,他斥责说,神圣的数是上帝创造的,在上帝创造的数里没有“0”这个怪物,如今谁要把它给引进来,谁就是亵渎上帝!于是,教皇就下令,把这位学者抓了起来,并对他施加了酷刑,用夹子把他的十个手指头紧紧夹注,使他两手残废,让他再也不能握笔写字。就这样,“0”被那个愚昧、残忍的罗马教皇明令禁止了。
但是,虽然“0”被禁止使用,然而罗马的数学家们还是不管禁令,在数学的研究中仍然秘密地使用“0”,仍然用“0”做出了很多数学上的贡献。后来“0”终于在欧洲被广泛使用,而罗马数字却逐渐被淘汰了。
高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是:
1+2+3+……+97+98+99+100=?
老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被高斯叫住了!!原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗?
高斯告诉大家他是如何算出的:把1加至100与100加至1排成两排相加,也就是说:
1+2+3+4+……+96+97+98+99+100
100+99+98+97+96+……+4+3+2+1
=101+101+101+……+101+101+101+101
共有一百个101相加,但算式重复了两次,所以把10100除以2便得到答案等于
从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才!
有一天,数字卡片在一起吃午饭的时候,最小的一位说起话来了。
0弟弟说:“我们大家伙儿,一起拍几张合影吧,你们觉得怎么样?”
0的兄弟姐妹们一口齐声的说:“好啊。”
8哥哥说:“0弟弟的主意可真不错,我就做一回好人吧,我老8供应照相机和胶卷,好吧?”
老4说话了:“8哥,好是好,就是太麻烦了一点,到不如用我的数码照相机,就这么定了吧。”
于是,它们变忙了起来,终于+号帮它们拍好了,就立刻把数码照相机送往冲印店,冲是冲好了,电脑姐姐身手想它们要钱,可它们到底谁付钱呢?它们一个个呆呆的望着对方,这是电脑姐姐说:“一共5元钱,你们一共十一个兄弟姐妹,平均一人付多少元钱?”
在它们十一个人中,就数老六最聪明,这回它还是第一个算出了结果,你知道它是怎么算出来的吗?
一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子。不长时间,徒弟三人摘完桃子高高兴兴回来。师父唐僧问:你们每人各摘回多少个桃子?
八戒憨笑着说:师父,我来考考你。我们每人摘的一样多,我筐里的桃子不到100个,如果3个3个地数,数到最后还剩1个。你算算,我们每人摘了多少个?
沙僧神秘地说:师父,我也来考考你。我筐里的桃子,如果4个4个地数,数到最后还剩1个。你算算,我们每人摘了多少个?
悟空笑眯眯地说:师父,我也来考考你。我筐里的桃子,如果5个5个地数,数到最后还剩1个。你算算,我们每人摘多少个?
唐僧很快说出他们每人摘桃子的个数。你知道他们每人摘多少个桃子吗?
小朋友们,当你轻轻地打开数学书的时候,是否看到了数字们微笑的脸?咦?数字怎么是活着的呢?当然是活着的喽!他们各有不同的性格。你看,一向认为自己个头最高、腰板总是挺得直直的“1”,是多么傲慢呀。他可以整除所有的数,但是他除了自身之外却不能被别的数整除,真可谓是“独霸将军”。
但是“2”却很和善,所以他和他的倍数们成了很好的朋友。听说过什么是质数吗?那些家伙在数字界中有点与众不同。他们很固执,相互缠在一起,挂在筛子上怎么都打不散,总是抱成团。怎么样,数字们都拥有不同的个性吧。因此,我们不能忽视他们的生命。据说,数字们也时常组织聚会呢。这种聚会根据不同的目的和时间而定,同样的数字可以参加不同种类的聚会。当听到“自然数集合”时,所有的自然数就会聚集在一起,但是当听到“整数集合”时,刚刚集合在自然数队伍里的数字们就会跟着整数的队伍走。
“王子!”
动物王国的国王10年前丢了一个儿子,所以从很早以前大臣们就开始四处寻找王子。
国王因为年纪大了,记忆力渐渐地减退,越是这样,国王越想看到王子。
“埃克斯呀,我的埃克斯,我想你想得连觉都睡不着了。”
“在我死之前,如果能看一眼我的儿子……”
大臣们为了老国王到处寻找,并告诉大家:
“我们的王子有3个特征:第一,用4只脚走路;第二,浑身长毛;第三,力量很大。如果谁看到王子请立刻与我们联系。”
听了这番话,老虎觉得自己浑身都是毛,心里想:
“这不是在说我吗?是啊,我就是王子。”
于是,老虎跑到了大臣们的面前。
“我就是王子。”
大家看了看这只老虎,它可以用4只脚走路,全身的长毛随风飘舞。不仅如此,它的力气很大,在旁边观看的小兔子被他踢了一下,立刻就晕倒了。
大臣们看了看老虎,连连点头。
这时,传来一声急促的喊声:
“等等!”
只见一只狐狸撅着尖尖的小嘴儿,扭动着身体走了过来。
“我才是王子呢。”
狐狸用轻巧的小脚儿跳了跳,炫耀着闪闪发光的银毛,说道:
“只有力气就行了吗?真正的力量来自智慧!正因为我聪明十足,所以才有‘像狐狸一样聪明’这样的话。”
听了狐狸的话,大臣们又连连点头。
大臣们无法断定谁是埃克斯王子,打算向国王禀报。国王听到找到王子的消息,高兴得合不拢嘴,连忙跑了出来。但是老虎和狐狸正为谁是王子的事情争吵不休,刚开始还只是吵嘴,后来干脆相互扭打在一起,撕咬起来。
国王看着打得头破血流的老虎和狐狸,脸上的笑容顿时消失了。
“从前可爱的孩子们现在竟然变成这样……”
国王很伤心。
其实他们两个都是国王的孩子,国王沉默了很久,然后说道:
“我的儿子还有一个特征,爱打架的人不是我的孩子。”
听了这句话,原先撕打在一起的老虎和狐狸立刻停了下来。
国王又说:
“我要找的埃克斯王子不存在了,以后不要再找王子了。”
大臣们手里拿着“x”形状的王冠,本来这顶王冠是要给王子戴的,一听国王这样说,大臣们都呆呆地站在原地。国王走了。
“埃克斯不存在了,埃克斯不存在了……”
远处回荡着国王的叹息声。
三人住旅店,每人每天的价格是十元,每人付了十元钱,总共给了老板三十元,后来老板优惠了五元,让服务员退给他们,结果服务员污了两元,剩下三元每人退了一元钱,也就是说每人消费了9元钱。三个人总共花了27元,加上服务员贪的2元总共29元。那一元钱到哪去了?
小咪家里来了5位同学。小咪的爸爸想用苹果来招待这6位小朋友,可是家里只有5个苹果。怎么办呢?只好把苹果切开了,可是又不能切成碎块,小咪的爸爸希望每个苹果最多切成3块。这就成了又一道题目:给6个孩子平均分配5个苹果,每个苹果都不许切成3块以上。
小咪的爸爸是怎样做的呢?
春节里,养鸡专业户小马虎站在院子里,数了一遍鸡的总数,决定留下 ,1/2外,把1/4慰问解放军,1/3送给养老院。他把鸡送走后,听到房内有鸡叫,才知道少数了10只鸡。于是把房内房外的鸡重数一遍,没有错,不多不少,正是留下1/2的数。小马虎奇怪了。问题出在哪里呢?你知道小马虎在院里数的鸡是多少只吗?
来了多少客人一天,小林正在家里洗碗,小强看见了问道:“怎么洗那么多的碗 ?”“
家里来了客人了。”“来了多少人?”小林说:“我没有数,只知道他们每人用一个饭碗,二人合用一个汤碗,三人合用一个菜碗,四人合用一个大酒碗,一共用了15个碗。”你知道来了多少客人吗?
小熊的妈妈生病了,为了能挣钱替妈妈治病,小熊每天天不亮就起床下河捕鱼,赶早市到菜场卖鱼。
一天,小熊刚摆好鱼摊,狐狸、黑狗和老狼就来了。小熊见有顾客光临,急忙招呼:“买鱼吗,我这鱼刚捕来的,新鲜着呢!”狐狸边翻弄着鱼边问:“这么新鲜的鱼,多少钱一千克?”小熊满脸堆笑:“便宜了,四元一千克。”老狼摇摇头:“我老了,牙齿不行了,我只想买点鱼身。”小熊面露难色:“我把鱼身卖给你,鱼头、鱼尾卖给谁呢? ”狐狸甩甩尾巴道:“是呀,这剩下的谁也不愿意买,不过,狼大叔牙不好,也只能吃点鱼肉。这样吧,我和黑狗牙好,咱俩一个买鱼头,一个买鱼尾,不就既帮了狼大叔,又帮了你熊老弟了吗?” 小熊一听直拍手,但仍有点迟疑:"好倒好,可价钱怎么定?”狐狸眼珠一转,答道:“鱼身2元1千克,鱼头、鱼尾各1元1千克,不正好是4元1千克吗?”小熊在地上用小棍儿画了画,然后一拍大腿:“好,就这么办!”四人一齐动手,不一会儿就把鱼头、鱼尾、鱼身分好了,小熊一过秤,鱼身35千克70元;鱼头15千克15元,鱼尾10千克10元。老狼、狐狸和黑狗提着鱼,飞快地跑到林子里,把鱼头鱼身鱼尾配好,重新平分了,……
小熊在回家的路上,边走边想:我60千克鱼按4元1千克应卖240元,可怎么现在只卖了95元……小熊怎么也理不出头绪来。
你知道这是怎么一回事吗?
阿拉伯数字1、2、3、4、5、6、7、8、9、0是国际上通用的数码。这种数字的创制并非阿拉伯人,但也不能抹掉阿拉伯人的功劳。阿拉伯数字最初出自印度人之手,也是他们的祖先在生产实践中逐步创造出来的。
公元前3世纪,印度出现了整套的数字,但各地的写法不一,其中典型的是婆罗门式,它的独到之处就是从1~9每个数都有专用符号,现代数字就是从它们中脱胎而来的。当时,“0”还没有出现。到了笈多时代(300-500年)才有了“0”。这样,一套完整的数字便产生了。这就是古代印度人民对世界文化的巨大贡献。
印度数字首先传到斯里兰卡、缅甸、柬埔寨等国。7-8世纪,随着地跨亚、非、欧三洲的阿拉伯帝国的崛起,阿拉伯人如饥似渴地吸取古希腊、罗马、印度等国的先进文化,大量翻译其科学著作。771年,印度天文学家、旅行家毛卡访问阿拉伯帝国阿拨斯王朝(750-1258年)的首都巴格达,将随身携带的一部印度天文学著作《西德罕塔》献给了当时的哈里发曼苏尔(757-775),曼苏尔令翻译成阿拉伯文,取名为《信德欣德》。此书中有大量的数字,因此称“印度数字”,原意即为“从印度来的”。
阿拉伯数学家花拉子密(约780-850)和海伯什等首先接受了印度数字,并在天文表中运用。他们放弃了自己的28个字母,在实践中加以修改完善,并毫无保留地把它介绍给西方。9世纪初,花拉子密发表《印度计数算法》,阐述了印度数字及应用方法。
印度数字取代了冗长笨拙的罗马数字,在欧洲传播,遭到一些基督教徒的反对,但实践证明优于罗马数字。1202年意大利雷俄那多所发行的《计算之书》,标志着欧洲使用印度数字的开始。该书共15章,开章说:“印度九个数字是:‘9、8、7、6、5、4、3、2、1’,用这九个数字及阿拉伯人称作sifr(零)的记号‘0’,任何数都可以表示出来。”
14世纪时中国的印刷术传到欧洲,更加速了印度数字在欧洲的推广应用,逐渐为欧洲人所采用。
刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位。他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产。
《九章算术》约成书于东汉之初,共有246个问题的解法。在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证明。在这些证明中,显示了他在多方面的创造性的贡献。他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根。在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法。在几何方面,提出了"割圆术",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法。他利用割圆术科学地求出了圆周率π=3.14的结果。刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代极限观念的'佳作。
《海岛算经》一书中, 刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目。
刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是我国最早明确主张用逻辑推理的方式来论证数学命题的人。
刘徽的一生是为数学刻苦探求的一生。他虽然地位低下,但人格高尚。他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。
沈括在我国北宋时代,有一位非常博学多才、成就显著的科学家,他就是沈括——我国历史上最卓越的科学家之一。他精通天文、数学、物理学、化学、生物学、地理学、农学和医学;他还是卓越的工程师、出色的军事家、外交家和政治家;同时,他博学善文,对方志律历、音乐、医药、卜算等无所不精。他晚年所著的《梦溪笔谈》详细记载了劳动人民在科学技术方面的卓越贡献和他自己的研究成果,反映了我国古代特别是北宋时期自然科学达到的辉煌成就。《梦溪笔谈》不仅是我国古代的学术宝库,而且在世界文化史上也有重要的地位。《梦溪笔谈》是中国科学史上的坐标,是沈括一生社会和科学活动的总结,内容极为丰富,包括天文、历法、数学、物理、化学、生物、地理、地质、医学、文学、史学、考古、音乐、艺术等共600余条。其中200来条属于科学技术方面,记载了他的许多发明、发现和真知灼见。
沈括在数学方面也有精湛的研究。他从实际计算需要出发,创立了“隙积术”和“会圆术”。沈括通过对酒店里堆起来的酒坛和垒起来的棋子等有空隙的堆体积的研究,提出了求它们的总数的正确方法,这就是“隙积术”,也就是二阶等差级数的求和方法。沈括的研究,发展了自《九章算术》以来的等差级数问题,在我国古代数学史上开辟了高阶等差级数研究的方向。此外,沈括还从计算田亩出发,考察了圆弓形中弧、弦和矢之间的关系,提出了我国数学史上第一个由弦和矢的长度求弧长的比较简单实用的近似公式,这就是“会圆术”。这一方法的创立,不仅促进了平面几何学的发展,而且在天文计算中也起了重要的作用,并为我国球面三角学的发展作出了重要贡献。
秦九韶(约公元1202年至1261年)系南宋普州(安岳)人,字道古,四川安岳人。父季据,进士出身,曾任工部侍郎、秘书省秘书少监。秦九韶自己曾任和州(今安徽和县)、琼州(今海南琼县)、薪州(今湖北薪春)、建康(今江苏南京)通判。1261年左右被贬至梅州(今广东梅县),不久死于任所。他与李冶,杨辉,朱世杰并称宋元数学四大家。秦氏成才之路有三:其一是因为他父亲长期从政,他自己也出任地方行政官吏,在行政管理工作中,广泛接触工程技术、农田水利、海运交通、钱粮经济、商品交易、军事后勤等工作,为他著作《数书九章》采集素材提供有利条件。其二,据《数书九章》秦氏自序说:“早岁侍亲中都,因得访习于太史。”这当是在他父亲任秘书少监职时事,秦九韶向制订历法官员学习造历知识。其三,《数书九章》秦氏自序还说:“尝从隐君子受数学”,隐君子是谁,未详姓名,很可能是一位学识渊博的学者,所以秦九韶在数学上的创造发明、其来有自:家学渊源、本人工作实践,刻苦钻研以及良师益友间互相切磋质疑问难。
1247年(淳佑七年)著成《数书九章》,全书18卷,81题,分为九大类:大衍类、天时类、田域类、测望类、赋役类、钱谷类、营建类、军旅类、市易类。这是一部划时代的巨作,它总结了前人在开方中所使用的列筹方法,将其整齐而有系统地应用到高次方程的有理或无理根的求解上去,其中对“大衍求一术”和“正负开方术”等有十分深入的研究。 “大衍求一术”和“正负开方术”比欧美国家早600年,代表中世纪数学发展的主流,并将中国古代数学推向了顶峰,是世界最伟大的数学家之一。秦九韶著作的主要成就:
1、完整保存了中国数码字计数法:自然数、分数、小数、负数都有专门论述
2、首创连环求等,求几个数的最小公倍数
3、更进一步认识比例,比例项数达到5项之多,层层变换。有条不紊
4、一次同余式组的程序化解法,创大衍求一术
5、三斜求积公式,使“海伦公式”不专美于前
6、线性方程组的直除法(即加减消元法),将系数矩阵化为单位矩阵
7、用正负开方术数值解多项式
13世纪时秦九韶在一次同余论方面的创造发明是有划时代意义的。印度数学先驱阿耶波多。(Aryabhata,476—550年)在其《文集》第2章第32、33节对同余式③的解法有过议论,但仅有四句押韵诗传世,自称为库塔卡术(Kuttaka,义:碾细),含义隐晦,经后人一再补充注释,人们才理解其用意。秦氏所作有系统论述,如上述第①③项成果就胜于印度。和算(日本古典数学)向以中算为师。秦九韶的各项成果日本直至关孝和(1642?一1708年)所著《括要算法》(1683年)中才有所著述。西欧在一次同余理论上之有与秦九韶同等水平,是由欧拉、拉格朗日与高斯三代人,三大师前后历经18至19世纪的60多年探索才达到的,特别是高斯24岁年华时(1801年)发表名著《算术研究》,其中第l、2两章才全面论述一次同余理论。
他写成了影响世界的数学名著——《数书九章》但他又被后人称为“暴如虎狼,毒如蛇蝎”之徒。
秦九韶(1208年-约1268年),字道古,生于普州(今四川安岳),南宋著名数学家。他与李治、杨辉、朱世杰并称我国十三世纪“四大数学家”。
在成都市东南方向,北纬30度与东经105度的交汇处,连绵不断的小山丘与平地,被绿油油的稻田、麦地和郁郁葱葱的林木打扮得色彩缤纷、艳丽迷人。1208年春,秦九韶就出生在这富饶之地——普州(今安岳),并在这里度过了无忧无虑的少儿时代。
普州城天庆观街曾有“秦苑斋”,据普州民间故事《秦团练奉祠谢赐》,秦苑斋是秦家宅院,是秦九韶少年生活、读书的地方。
秦九韶的父亲名叫秦季与南宋哲学家陈亮、程璐一起参加科举考试,成为同榜进士(当时的最高学位)。嘉定十二年(1219)三月,兴元(今陕西汉中)军士张福、莫简等发动兵变,入川以后攻取利州、遂宁、普州等地。“守臣秦季
父亲任职工部郎中和秘书少监期间,秦九韶有机会阅读大量典籍,并拜访天文历法和建筑等方面的专家,请教天文历法和土木工程问题,甚至深入工地,了解施工情况。他又曾向“隐君子”陈元靓学习数学,向著名词人李刘学习骈俪诗词,达到较高水平。通过这一阶段的学习,秦九韶成为一位学识渊博、多才多艺的青年学者,时人说他“性极机巧,星象、音律、算术,以至营造等事,无不精究。”
1225年7月,秦九韶随父亲至潼川(今三台县)。蒙古军队已侵入今甘肃、陕西一代,北方的抗蒙(元)斗争如火如荼。南宋朝廷“募义兵五千人,与民约日:‘敌至则官军守原堡,民丁保山砦,义兵为游击。”在各地建立了民间武装。通武知兵的秦九韶担任了民问武装的“义兵首”,维护地方治安。
四年后,绍定二年(1229)十月,秦九韶被擢升为县县尉(三台图书馆《?县志》)。
毕达哥拉斯其实不只一位,他有很多追随者,他们形成了一个学派。他们对数的崇拜有着宗教的神秘主义色彩。带着对神的崇敬来研究几何与数字。
毕达哥拉斯学派最有名的数学成果当属毕达哥拉斯定理:对于一个直角三角形,两直角边的平方和等于斜边的平方。这是平面几何最基本的结果之一。
毕达哥拉斯学派的故事说明了数学和这样宗教如果结合是多么的危险。毕达哥拉斯学派神化的整数,认为整数是宇宙的基石。他们研究几何与音乐,只要和数量相关的东西都认为是两个整数的商。
毕达哥拉斯的一个追随者道如何把一个直角边长等于1的等腰直角三角形的斜边用两个整数的商表示出来。但是他的结果是:这是不可能的。用现代人的说法就是,2的平方根是一个无理数。
故事的结局是悲惨的。当这位追随者把它的关于可能存在无理数——一种不能表示成两整数之商的数——的事实告诉同伴时。同伴们很震惊,但也很愤怒,把这位有重大发现的追随者装上了船,扔进水里淹死了。
欧几里得是古希腊最伟大的数学家之一。
在他的传世之作《几何原本》中,欧几里得建议了一个几何学的框架。正当诸如毕达哥拉斯们的其他古西腊先哲们还在纠结于关于数的问题的时候,欧几里得已经开始引进他严谨的论证体系了:从为数学多的关于点、线的公理出发,通过不断演绎推理,建立了一套在当时最系统化的几何学。
这种从公理开始,不断推导结果,而每个新结果都由之前推导出的结果为依据的严谨论证思想,可能是2000多年的历史长河中,最据支配地位的思想。
这个榜单的其他数学家在各个数学分支都有大量的贡献,而纳皮尔只有一个发明,但这个发明极为重要:对数。简单的说,一个数的对数让我们知道了这个数额数量级。
用现在的话来说,对数有一个“底数”,一个数的对数就是得到一个数,使得这个底数的那么多次方等于这个数。比如,以10为底数,10的对数是1,100的对数是2。因为10的1次方等于10,10的平方,就是2次方等于100。
对数之所以这么有用,是一个重要原因是由于它的一些性质:对数能把乘法变成加法,把除法变成减法。更确切的讲,两个数乘积的对数等于这两个数分别取对数在加起来。同样,两数商的对数等于两数对数的差。
在没有计算机的年代,这个性质打打降低计算的难度。对两个非常大或者非常精细的小数做乘除法要比做加减法的时间长得多。所以,如果有人要对两个大数做乘法,他可以先查对数表的得到两个数的对数,在加起来,然后再用对数表返查得到结果。
一些计算工具,比如说计算尺,利用对数来做快速计算。这种快速计算器在科学和航海中派上了打用场,我们可以非常快得做一些大数的计算。
很多用数量级来衡量计量单位也是用对数来衡量的。比如地震中的里氏震级,以及衡量声音大小的分贝。
开普勒是一位天才的几何学家,他把他的数学能力强化了人们对太阳系的认识。开普勒曾经是伟大的天文观测家的第谷·布拉赫助手,而布拉赫拥有一些在当时最细致的行星运动的记录资料。通过分析这些资料,开普勒能够确定和改进哥白尼的太阳系观点:行星围着太阳转,而转动的时间是基于椭圆形状的行星轨道用并用精确定义的数学定律来描述的。
开普勒定律是一个伟大发现,因为它是对物理过程精确且简洁描述。像行星绕太阳的轨道这样,我们世界的事物遵循这各种各样的规律。20世纪的物理学家维格纳有一个优美的表述,“数学无理由的有效性”。开普勒定律就是这种无理由的有效性的早期例子。
开普勒定律也为牛顿发现他的牛顿运动律提供了条件,尤其是万有引力定律。开普勒对天体力学的贡献让美国国家航空航天局(NASA)将研究太阳系以外的行星的项目以他的名字命名,叫做开普勒任务。
笛卡尔最被人熟知的是他对哲学的贡献。他提出了精神与物质二元论(心物二元论),他还有一句名言:“我思故我在。”。但是,我们今天使用的大部分数学都欠笛卡尔一份“小恩情”。
笛卡尔对数学最重要的一份贡献就是创立了解析几何。数学在笛卡尔之前的历史长河中,代数和几何是互不联系的两个学科。一方面,我们有我们对数字和未知量进行符号化和抽象的操作。另一方面,我们又对一些平面图形和立体图形进行研究。
笛卡尔的解析几何统一了这两个领域。他开拓了一种把代数式和方程用坐标平面上的直线或者曲线表示的思想。他的这种基本思想至在今天的中学课程中还在学习。学生们还在练习把y=3x+5这样的方程画成直线,或者把y = x – 4这样的方程画成抛物线。
这种几何与代数的结合是之后创立微积分的重要前置条件,同样,它还理所当然的还是现代数学的核心思想。为了纪念的卡尔如此重要的奠基性工作,我们把他发明坐标系定名为“笛卡尔坐标平面”。
法国数学家帕斯卡和这榜单的其他很多数学家一样,在数学的很多领域都有贡献。帕斯卡三角形(中国叫做杨辉三角)提供了一套计算二项式系数的漂亮方法,而二项式系数在代数和其他分支非常重要。他还发明了世界上第一台机械计算器,是现代计算机的早期原始版本。
帕斯卡同样还是概率论的创立者之一,他在分析游戏的取胜机会时候开创了这个理论。帕斯卡关于基本概率的工作,让我们开始有能力用数学方法理解机会与风险。
帕斯卡把他的概率理论用于神学研究,他提出“帕斯卡赌局”的理论,用于说明为什么我们应该相信神的存在。
牛顿于英格兰发明微积分的同时,莱布尼兹在德国独立的发明了微积分,然后在数学家之间引发了一场关于微积分发明权的争论。但无论如何,莱布尼兹当时使用的很多微积分的符号一直沿用至今。
莱布尼兹同时在各个方面预见了数学之后的发展。他笃信理性主义,他专注的形式符号逻辑在19世纪末20世纪初发展成了现代数理逻辑和集合论。莱布尼兹和帕斯卡一样还参与了机械计算器的改进的研究。
贝叶斯提供了关于概率论与数理统计最重要的工具之一。这个工具让我们对概率的研究能够进行更加艰巨的探索。
如果我们知道一个事件发生的内在机制,那么我们计算着事件的概率是非常简单的。用基本的计算,我们能算出打扑克梭哈时,得到同花顺的概率,或者扔硬币时,连续5次都是正面的概率,再或者彩票中奖的概率。
但更多时候,我们更关心把上述问题反过来的情况。我们不去计算基于知道发生机制的事件的概率,而是基于观察到的现象,想得到和了解不知道发生机制的事件的发生的可能性。
我们需要了解在一些情况下基于观测现象背后的关联性。比如医学(如果检测为阳性,患病的可能有多大?)、比如社会科学(基于历史数据,最好的解释通货膨胀与失业率之间关系的模型是什么?)、比如日常生活(如果女孩同意和我去另外一家酒吧,他对我有意思的可能性有多大?)。
贝叶斯定理提供了一个形式化的工具,让我们能回答这些问题。当一种事情已经发生的条件下,定理让我们能计算这样的概率,当特定事件发生时,鉴于观测结果,基于我们把观测结果纳入特定事件看是否发生,这样能同时得到先前事件在特定事件下发生的可能性。
贝叶斯定理是一个分析信息缘由的强大工具,它还是整个统计学思想的底层框架。
在牛顿和莱布尼兹之后,欧拉接过了对微积分的研究的工作。他引入了现代函数的概念:一条规则,或者说几条规则,用于把一个数变化成另外一个数。在当今数学中,这个概念把所以不相关的分支联系到了一起:线性方程、多项式方程、三角几何,甚至我们测量平面上两点间的距离的办法都能理解和表示为一系列函数以及操作它们的办法。
欧拉同样发展了幂级数理论:一个把复杂函数用无限个简单项之和来表示的方法。他研究了三角函数和指数函数的幂级数,让他发现了一个特别的,但很常用很重要的一个公式,著名的欧拉公式e^(iπ)+1=0。
欧拉还是最多产的数学家之一,在很多领域都有贡献。他对哥尼斯堡七桥问题的解决被认为是最早的拓扑和图论成果之一。
阿基米德可能是所有时代最伟大的数学家。他最被人熟知的贡献是他早期物理学的发现。他发现了杠杆原理,和浮力定律。一个大家都知道的传说:有一天,阿基米德在洗澡,看见洗澡水从澡盆里的漫了出来,于是他兴奋,裸奔上了大街,嘴里兴奋地尖叫:“我发现了!”
作为数学家的阿基米德甚至比他在物理中做得更好。他已经能够把圆周率估算到一个非常好的精确值,以及计算抛物线围成的一些图形的面积。
这些成就让人惊奇的真正原因是,阿基米德使用的计算方法和1800年后牛顿和莱布尼兹发明的微积分中的计算方法惊人的相似。他用不断的添加更细致多边形的来接近图形,这样多边形的面积就会和想要计算的面积的差距越来越小。这样的方法,让人强烈的联想到现代的极限思想。阿基米德这样的数学智慧,领先了他所处时代将近两千年。
祖冲之祖籍河北,他的祖父和父亲都曾在南朝做官,因而他出生于南方。晋朝末年,由于北方连年混战,中原地区的人口大量迁移到南方,促使长江流域的农业生产和社会经济各方面都有迅速的发展,祖冲之正是诞生在这样的时代环境里。祖家历代对天文历法都很有研究。在家庭的影响下,祖冲之从小便对天文学和数学发生了浓厚的兴趣。
在青年时代,他便对刘歆、张衡、王蕃、刘徽等人的工作进行了深入细致的研究,驳正了他们的错误。以后他继续钻研,在科学技术方面作出极有价值的贡献。精确到小数点后第六位数的圆周率,便是他其中最杰出的成就之一。在天文历法方面,他曾将自古代到他生活年代为止所有可以搜罗到的文献资料,全部整理了一遍,并且通过亲自观测和推算,做了深切的验证。他指出当时所流行的何承天(公元370-447年)编定的历法有许多严重的错误。因此他便开始编制另一种新的历法。
宋大明6年(公元462年),33岁的祖冲之编好了新的历法“大明历”。这是一部最好的历法,但是却遭到了当时朝廷中最得势人物戴法兴的反对。许多官员惧怕戴法兴的势力,不敢对祖冲之新历作公正的评定。祖冲之为了坚持真理,勇敢地与戴法兴展开了辩论,他写了一篇有名的《驳议》,逐条驳斥了戴法兴的无理责难。这场辩论,实际上反映了当时科学发展过程中科学和反科学、进步和保守之间的尖锐斗争。戴法兴等人认为:历代流传下来的东西,都是古制,是不可革的,是“万世不易”的,他们认为天文历法不是“凡人”可以修改的,他们说:“非冲之浅虑妄可穿凿”,甚至进一步责骂祖冲之是“诬天背经”。祖冲之对他们提出了尖锐的反驳。他认为日月五星的运行“非出神怪”,“是有形可检,有数可推”,只要进行细心的观测和推算。孟子早先所说“千年之日至(夏至、冬至)可生而致”的话是完全可以做到的。祖冲之在《驳议》中写了两句非常有名的话“愿闻显据,以覆理实”,“浮词虚贬,窃非所惧”。他希望双方都拿出真实的证据,辨明真正的是非,至于造谣和诽谤,那是他丝毫不怕的。由于种种阻碍,大明历一直到他死后十年,在梁朝才得以颁行(公元510年)。
祖冲之除天文历法和数学之外,对机械方面也有研究,他制造过“指南车”和“千里船”,此外,他对音律也很精通,对古代的许多书籍进行过注释,他还写过十卷小说,他真称得上是一个多才多艺的科学家。关于他在数学方面的著作,最著名的要算是《缀术》,此外还有《九章算术译注》、《重差注》等等,但这些也都失传了。
祖冲之的儿子祖暅也是一位杰出的数学家,他继承了祖冲之在数学和天文历法方面的工作,并进一步发扬光大了他父亲的成就。祖冲之的“大明历”就是经过祖暅三次建议之后才被梁朝采用的。关于球体体积的计算也是作为祖暅的工作流传下来的。祖暅终生好学不倦。传说他小的时候,专心读书,连打雷也不觉得,走路时思考问题,曾经撞到别人身上。
祖冲之父子的名字,不仅在国内已是受到称道,在世界上也受到了应有的重视。
赵爽,三国时期东吴的数学家。曾注《周髀算经》,他所作的《周髀算经注》中有一篇《勾股圆方图注》全文五百余字,并附有数幅插图(已失传),这篇注文简练地总结了东汉时期勾股算术的重要成果,最早给出并证明了有关勾股弦三边及其和、差关系的二十多个命题,他的证明主要是依据几何图形面积的换算关系。
赵爽还在《勾股圆方图注》中推导出二次方程x2+ax=A(其中a>0,A>0)的求根公式。
在《日高图注》中利用几何图形面积关系,给出了'重差术'的证明。(汉代天文学家测量太阳高、远的方法称为重差术)。
祖冲之祖籍河北,他的祖父和父亲都曾在南朝做官,因而他出生于南方。 晋朝末年,由于北方连年混战,中原地区的人口大量迁移到南方,促使长江流域的农业生产和社会经济各方面都有迅速的发展,祖冲之正是诞生在这样的时代环境里。祖家历代对天文历法都很有研究。在家庭的影响下,祖冲之从小便对天文学和数学发生了浓厚的兴趣。
在青年时代,他便对刘歆、张衡、王蕃、刘徽等人的工作进行了深入细致的研究,驳正了他们的错误。以后他继续钻研,在科学技术方面作出极有价值的贡献。精确到小数点后第六位数的圆周率,便是他其中最杰出的成就之一。在天文历法方面,他曾将自古代到他生活年代为止所有可以搜罗到的文献资料,全部整理了一遍,并且通过亲自观测和推算,做了深切的验证。他指出当时所流行的何承天(公元370—447年)编定的历法有许多严重的错误。因此他便开始编制另一种新的历法。
宋大明6年(公元462年),33岁的祖冲之编好了新的历法“大明历”。这是一部最好的历法,但是却遭到了当时朝廷中最得势人物戴法兴的反对。许多官员惧怕戴法兴的势力,不敢对祖冲之新历作公正的评定。祖冲之为了坚持真理,勇敢地与戴法兴展开了辩论,他写了一篇有名的《驳议》,逐条驳斥了戴法兴的无理责难。这场辩论,实际上反映了当时科学发展过程中科学和反科学、进步和保守之间的尖锐斗争。戴法兴等人认为:历代流传下来的东西,都是古制,是不可革的,是“万世不易”的,他们认为天文历法不是“凡人”可以修改的,他们说:“非冲之浅虑妄可穿凿”,甚至进一步责骂祖冲之是“诬天背经”。祖冲之对他们提出了尖锐的反驳。他认为日月五星的运行“非出神怪”,“是有形可检,有数可推”,只要进行细心的观测和推算。孟子早先所说“千年之日至(夏至、冬至)可生而致”的话是完全可以做到的。祖冲之在《驳议》中写了两句非常有名的话“愿闻显据,以覆理实”,“浮词虚贬,窃非所惧”。他希望双方都拿出真实的证据,辨明真正的是非,至于造谣和中伤,那是他丝毫不怕的。由于种种阻碍,大明历一直到他死后十年,在梁朝才得以颁行(公元510年)。
祖冲之除天文历法和数学之外,对机械方面也有研究,他制造过“指南车”和“千里船”,此外,他对音律也很精通,对古代的许多书籍进行过注释,他还写过十卷小说,他真称得上是一个多才多艺的科学家。关于他在数学方面的著作,最著名的要算是《缀术》,此外还有《九章算术译注》、《重差注》等等,但这些也都失传了。
祖冲之的儿子祖暅也是一位杰出的数学家,他继承了祖冲之在数学和天文历法方面的工作,并进一步发扬光大了他父亲的成就。祖冲之的“大明历”就是经过祖暅三次建议之后才被梁朝采用的。关于球体体积的计算也是作为祖暅的工作流传下来的。祖暅终生好学不倦。传说他小的时候,专心读书,连打雷也不觉得,走路时思考问题,曾经撞到别人身上。
祖冲之父子的名字,不仅在国内已是受到称道,在世界上也受到了应有的重视。