样本容量是指一个样本中所包含的单位数,一般用n 表示,它是抽样推断中非常重要的概念。样本容量的大小与推断估计的准确性有着直接的联系,即在总体既定的情况下,样本容量越大其统计估计量的代表性误差就越小,反之,样本容量越小其估计误差也就越大。
扩展资料:
一、确定样本容量的意义
1、样本容量过大,会增加调查工作量,造成人力、物力、财力、宏虚时间的浪费。
2、样本容量过小,则样本对总体缺乏足够的代表性,从而难以保证推算结果的精确度和可靠性。
3、样本容量确定的科学合理,一方面,可以在既定的调查费用下,使抽样误差尽可能小,以保证推算的精确度和可靠性;另一方面,可以在既定的精确度和可靠性下,使调查费用尽可能少,保证抽样推断的最大效果。
二、计算方法
确定样本容量的大小是比较复杂的问题,既要有定性的考虑也要有定量的考虑。从定性的方面考虑样本量的大小,其考虑因素有:决策的重要性,调研的性质,御伏变量个数,数据分析的性质,同类研究中所用的样本量,发生率,完成率,资源限制等。
具体地说,更重要的决策,需镇绝携要更多的信息和更准确的信息,这就需要较大的样本;探索性研究,样本量一般较小,而结论性研究如描述性的调查,就需要较大的样本;收集有关许多变量的数据,样本量就要大一些,以减少抽样误差的累积效应。
如果需要采用多元统计方法对数据进行复杂的高级分析,样本量就应当较大;如果需要特别详细的分析,如做许多分类等,也需要大样本。针对子样本分析比只限于对总样本分析,所需样本量要大得多。
参考资料来源:百度百科-样本容量