当前位置:百问九>百科知识>摆线的方程是什么?

摆线的方程是什么?

2024-05-20 10:49:44 编辑:zane 浏览量:557

x=r*(t-sint); y=r*(1-cost)r为圆的半径, t是圆的半径所经过的弧度(滚动角),当t由0变到2π时,动点就画出了摆线的一支,称为一拱。

由摆线x=a(t - sint),y=a(1 -cost)的一拱(0≤t≤2π) 与横轴所围图形的面积为3π*a^2。

解:根据定积分求面积公式,以x为积分变量,可得摆线的一拱与横轴所围图形的面积S为,S=∫|y| dx=∫a(1 -cost)d(a(t - sint))=∫a^2(1 -cost)^2dt

摆线的方程是什么?

扩展资料

摆线最早出现可见于公元 1501 年出版的 C·鲍威尔的一本书中.但在 17 世 纪,大批卓越的数学家(如伽利略,帕斯卡,托里拆利,笛卡儿,费尔马, 伍任,瓦里斯,惠更斯,约翰·伯努利,莱布尼兹,牛顿等等)热心于研究这一曲线的性质。

17 世纪是人们对数学力学和数学运动学爱好的年代,这能解释人们为什么对摆线怀有强烈的兴趣。在这一时期,伴随着许多发现,也出现了众多有关发现权的争议,剽窃的指责,以及抹煞他人工作的现象。这样,作为一种结果,摆线被贴上了引发争议的“金苹果”和“几何的海伦” 的标签。

版权声明:文章由 百问九 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.baiwen9.com/article/351284.html
热门文章
二维码