设招甲种工人x人,则乙种工人(150-x)人,依题意可列出不等式,求出其解集即可.
设招聘甲种工种的工人为x人,则招聘乙种工种的工人为(150-x)人,依题意得:
150-x≥2x解得:x≤50即0≤x≤50
再设每月所付的工资为y元,则
y=600x+1000(150-x)
=-400x+150000
∵-400<0,∴y随x的增大而减小
又∵0≤x≤50,∴当x=50时,∴y最小=-400×50+150000=130000(元)
∴150-x=150-50=100(人)
答:甲、乙两种工种分别招聘50,100人时,可使得每月所付的工资最少为130000元
版权声明:文章由 百问九 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.baiwen9.com/article/425482.html