麦比乌斯圈 莫比乌斯环的奇妙之处有三: 一、莫比乌斯环只存在一个面。 二、如果沿着莫比乌斯环的中间剪开,将会形成一个比原来的莫比乌斯环空间大一倍的、具有正反两个面的环(在本文中将之编号为:环0),而不是形成两个莫比乌斯环或两个其它形式的环。 三、如果再沿着环0的中间剪开,将会形成两个与环0空间一样的、具有正反两个面的环,且这两个环是相互套在一起的(在本文中将之编号为:环1和环2),从此以后再沿着环1和环2以及因沿着环1和环2中间剪开所生成的所有环的中间剪开,都将会形成两个与环0空间一样的、具有正反两个面的环,永无止境……且所生成的所有的环都将套在一起,永远无法分开、永远也不可能与其它的环不发生联系而独立存在。 莫比乌斯环、环0和生成的所有的环的六个特征: 一、莫比乌斯环是通过将正反面其中的一端反转180度与另一端对接形成的,也因此它将正反面统一为一个面,但也因此而存在了一个“拧劲”,我们在此不妨称之为“莫比乌斯环拧劲”1。 二、从莫比乌斯环生成为环0需要一个“演变的裂变”过程,此“演变的裂变”过程将“莫比乌斯环拧劲”分解成了因“相通”或“相连”从而分别呈现出“螺旋弧”向下和“螺旋弧”向上两个方向“拧”的四个“拧劲”。这四个“拧劲”中的第一个和第三个的“拧劲”将正面转化为反面,而第二个和第四个的“拧劲”再将反面转化为正面,或者说是,这四个的“拧劲”中的第一个和第三个的“拧劲”将反面转化为正面,而第二个和第四个的“拧劲”再将正面转化为反面,使所生成的环0从而存在了“正反”两个面。 三、从莫比乌斯环生成为环0的过程,还使环0具有了因相互转换而最终呈现为同一个方向上的、性质不同的四个“拧劲”。“演变的裂变”过程将莫比乌斯环的“莫比乌斯拧劲”分解成环0中的四个“拧劲”,“莫比乌斯拧劲”的“能”也被生成了环0中的这四个“拧劲”的“能”,但环0中的这四个“拧劲”的“能”是“莫比乌斯拧劲”的“能”2倍,新生成的1倍于“莫比乌斯拧劲”的“能”的方向与原来的“莫比乌斯拧劲”的“能”的方向相反。 四、从莫比乌斯环生成为环0的过程,还使环0的空间比莫比乌斯环的空间增大了一倍。 五、从宽氏蠢环0生成环n和环n+1的过程,环0中的四个“拧劲”的“能”不会增加,但从环0的“裂变”中,每“裂变”一次会增加一个环0的空间。 六、从环0生成环1和环2以及再“裂变”直至环n和环n+1后,所生成的所有的环n和环n+1都将套在一起,永远无法分开、永远也不可能与其它的环不发生联系而独立存在。 从莫比乌斯环的三个奇妙之处和莫比乌斯环、环0以及生成的所有的环的六个特征,我们得到奇妙的启示: 一、无论将莫比乌斯环放在宇宙时空的任何地方,我们同样也会发现莫比乌斯环之外的空间也只能是存在一个慎陪面,因此,宇宙时空的任何空间之处也只存在一个面。如果宇宙时空的任何空间之处只存在一个面,那么我们就可以认为宇宙时空中的任何一点与其它的点都是相通的,即整个宇宙时空是相通的,任何一点都是宇宙的中心,也是宇核唤宙的边缘,宇宙时空中的任何物质也都是一样,也都处于宇宙的中心,也都处于宇宙的边缘。 二:宇宙时空中的任何一个点都可以通过“裂变”的方式无中生有2地生成一个对立的阴阳两性。无论生成的这一个对立的阴阳两性是否需要载体呈现出来,通过“裂变”的方式,无中生有地、生成的一个对立的阴阳两性,都需要一个比原来的空间大一倍的空间,来体现这生成的、一个对立的阴阳两性。 三: 只要存在“裂变”就会使原来的莫比乌斯环不再以“本来面目”存在,或者说,原来的莫比乌斯环已经不存在了。从无中生有的、生成的、具有一个对立的、阴阳两性的环0“复原”成原来的莫比乌斯环,则需要化解一个对立的阴阳两性的面。 四、从莫比乌斯环生成为环0的过程,还使环0具有了因相互转换而最终呈现为同一个方向上的、性质不同的四个“拧劲”。我们得知,任何一个肯定应该是一个具有同一个方向上的、有缺口的或说成是非绝对的否定之否定之否定之否定的矢量(有一定方向的否定)过程。 五、从环0生成环1和环2以及再“裂变”直至环n和环n+1后,所生成的所有的环n和环n+1都将套在一起,永远无法分开、永远也不可能与其它的环不发生联系而独立存在。这说明宇宙万物之间存在普遍联系的法则,而且任何一点或一个事物都与其他所有的宇宙万物相通相连,是不可分割的、不可遗漏的。 六、宇宙万物从最终起源上来讲是没有任何差异的,均起源于只有一个面的空间或者说没有任何面的状态。因此也可以说宇宙万物都是从无中生有中而来,只不过是在演变的过程中呈现出差异而已。 七、在莫比乌斯环生成为环0的“裂变”过程中,无中生有的增加生成原有“拧劲”中的1倍的新的能量,也就是说在新产生的一对阴阳两性关系体的过程中的“裂变”不遵循“能量守恒原则”;而之后的所有的宇宙万物的再“裂变”只能使宇宙的时空增大,不再生成新的能量,而且在“裂变”中必然遵循“能量守恒原则”。 八、宇宙时空中的任何一个点都可以通过无中生有的方式第一次生成阴阳两性,然后再分别以刚生成的阴阳两性为基础生成第一次的阴阳两性的两个物质,第二次、第三次……直至永无穷尽。 [编辑本段]几何学与拓扑学结构 一个利用参数方程式创造出立体莫比乌斯带的方法: 用Matlab描绘的莫比乌斯带[1]x(u,v)=[1+v/2×cos(u/2)]cos(u) y(u,v)=[1+v/2×cos(u/2)]sin(u) z(u,v)=v/2×sin(u/2) 其中0≤u<2π且-1≤v≤1 。.这个方程组可以创造一个边长为1半径为1的莫比乌斯带,所处位置为x-y面,中心为(0,0,0)。参数u在v从一个边移动到另一边的时候环绕整个带子。 如果用极坐标方程表示的话(r,θ,z),一个无边界的莫比乌斯带可以表示为: log(r)sin(θ/2)=zcos(θ/2)。 麦比乌斯圈的应用: 数学中有一个重要分支叫“拓扑学”,主要是研究几何图形连续改变形状时的一些特征和规律的,“麦比乌斯圈”变成了拓扑学中最有趣的单侧面问题之一。麦比乌斯圈的概念被广泛地应用到了建筑,艺术,工业生产中。运用麦比乌斯圈原理我们可以建造立交桥和道路,避免车辆行人的拥堵。