史丰收速算法史丰收,成功地打破了传统四则运算法则,创造了从高位算起,不用计算工具,便一口气报出答案的快速计算法. 史丰收家住陕西省大荔县,从小就爱独立思考,敢想敢干.有一次,老师讲一位数乘多位数乘法,他巧纯裤突然举手提问:“老师,能不能从高位算起,由前面向后面算?”老师惊异了:“你如果有兴趣,也可以发明创造哇!”10岁的史丰收张开了想象的裤镇翅膀,决心走出传统算法的框框。他扑向数学的海洋,一有空就算呀写呀,演算本用了一本又一本,算式做了千万题,可答案总是不对。一天他突然从打算盘中得到启示。打二乘五时,把五去掉,前位上进一,他心里一亮,日思夜想的进位难关一下子就攻破了。接着,乘三,乘四直至乘九的进位规律一一解决了。 有一天,一个当过会计的人说:“你创造的一位数速算法虽然好,但算帐是多位数乘多位数哇!”史丰收听了,心里暗下决心,经过了无数个日日夜夜的刻苦钻研,他终于用“外移法“解决了多位数相乘的难题,并一鼓作气,攻克了除法和减法的速算堡垒。史丰收被请到各地表演,人们无不惊叹他的神速计算。后来,史丰收被破录取进了大学,在有关教授的帮助下,又解决了乘方,开方的速算方法,系统揭示了从高位算起的”进位“和“相加”的规律,总结出一套速算口诀。13位以内的加减乘除和平方,开方,他能一口气报出答案,比计算器运算得还要快。史丰收说,速算法是世界各国人民的共同财富,应当资源共享。他愿为数学基础领域的发展不懈努力,作出更大贡献。由速算大师史丰收经过10年钻研发明的快速计算法,是直接凭大脑进行运算的方法,又称为快速心算、快速脑算。这套方法打破人类几千年从低位算起的传统方法,运用进位规律,总结26句口诀,由高位算起,再配合指算,加快计算速度,能瞬间运算出正确结果,协助人类开发脑力,加强思维、分析、判断和解决问题的能力,是当代应用数学的一大创举。 这一套计算法,1990年由国家正式命名为“史丰收速算法”,现已编入中国九年制义务教育《现代小学数学》课本。联合国教科文组织誉之为教育科学史上的奇迹,应向全世界推广。 史丰收速算法的主要特点如下: ⊙从高位算起,由左至右 ⊙不用计算工具 ⊙不列计算程序 ⊙看见算式直接报出正确答案 ⊙可以运用在多位数据的加减乘除以及乘方、开方、三角函数、对数等数学运算上 演练实例一 速 算 法 演 练 实 例 Example of Rapid Calculation in Practice ○史丰收速算法易学易用,算法是从高位数算起,记着史教授总结了的26句口诀(这些口诀不需死背,而是合乎科学规律,相互连系),用来表示一位数乘多位数的进位规律,掌握了这些口诀和一些具体法则,就能快速进行加、减、乘、除、乘方、开方、分数、函数、对数…等运算。 □本文针对乘法举例说明 ○速算法和传统乘法一样,均需逐位地处理乘数的每位数字,我们把被乘数中正在处理的那个数位称为「本位」,而从本位右侧第一位到最末位所表示的数称「后位数」。本位被乘以后,只取乘积的个位数,此即「本个」,而本位的后位数与乘数相乘后要进位的数就是「后进」。 ○乘积的每位数是由「本个加后进」和的个位数即-- □本位积=(本个十后进)之和的个位数 ○那么我们演算时要由左而右地逐位求本个与后进,然后相加再取其个位数。现在,就以右例具体说明演算时的思维活动。 (例题) 被乘数首位前补0,列出算式: 0847536×2=1695072 乘数为2的进位规律是「2满5进1」 0×2本个0,后位8,后进1,得1 8×2本个6,后位4,不进,得6 4×2本个8,后位7,满5进1, 8十1得9 7×2本个4,后位5,满5进1, 4十1得5 5×2本个0,后位3不进,得0 3×2本个6,后位6,满5进1, 6十1得7 6×2本个2,无后位,得2 在此我们只举最简单的例子供读孝简者参考,至于乘3、4……至乘9也均有一定的进位规律,限于篇幅,在此未能一一罗列。 「史丰收速算法」即以这些进位规律为基础,逐步发展而成,只要运用熟练,举凡加减乘除四则多位数运算,均可达到快速准确的目的。 >>演练实例二 □掌握诀窍 人脑胜电脑 史丰收速算法并不复杂,比传统计算法更易学、更快速、更准确,史丰收教授说一般人只要用心学习一个月,即可掌握窍门。 对于会计师、经贸人员、科学家们而言,可以提高计算速度,增加工作效益;对学童而言、可以开发智力、活用头脑、帮助数理能力的增强。