故事:一天早上,祖冲之正在家中读书,读的就是那刘徽做了注的《九章算术》,看到“割圆术”处,心想:将那正多边形的边数算到96个并不算多,多边形的周长与圆周长相差还甚远,为何不再多算一些。正多边形的边长愈多,多边形的周长不就更接近圆周长了吗?那算出的周率不就更精确了吗?想着想着,抬头一看,正见儿子在外玩耍,便叫道:“暅儿,你且去后山砍两根竹子来。”祖冲之的儿子叫祖暅,聪明伶俐,受祖冲之的影响,耳濡目染,也喜欢了数学,后来也成了数学家,提出了著名的“祖暅定理”。听见父亲唤自己,急忙跑了进来问道:“爹,唤儿有什么事情?”祖冲之说道:“你去后山砍一根毛竹来。”暅儿问道:“又要做算筹?”祖冲之答道:“不错,你去砍了与我拿来。”成就:祖冲之在数学上的杰出成就,是关于圆周率的计算。三国时期,刘徽提出了计算圆周率的科学方法——“割圆术”,用圆内接正多边形的周长来逼近圆周长。刘徽计算到圆内接96边形,求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确。祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间,并得出了π分数形式的近似值,取22/7为约率,取355/113为密率,其中六位小数是3.141929,它是分子分母在1000以内最接近π值的分数。