DBSCAN和Kmeans的区别:1)K均值和DBSCAN都是将每个对象指派到单个簇的划分聚类算法,但是K均值一般聚类所有对象,而DBSCAN丢弃被它识别为噪声的对象。2)K均值使用簇的基于原型的概念,而DBSCAN使用基于密度的概念。3)K均值很难处理非球形的簇和不同大小的簇。DBSCAN可以处理不同大小或形状的簇,并且不太受噪声和离群点的影响。当簇具有很不相同的密度时,两种算法的性能都很差。4)K均值只能用于具有明确定义的质心(比如均值或中位数)的数据。DBSCAN要求密度定义(基于传统的欧几里得密度概念)对于数据是有意义的。5)K均值可以用于稀疏的高维数据,如文档数据。DBSCAN通常在这类数据上的性能很差,因为对于高维数据,传统的欧几里得密度定义不能很好处理它们。6)K均值和DBSCAN的最初版本都是针对欧几里得数据设计的,但是它们都被扩展,以便处理其他类型的数据。7)基本K均值算法等价于一种统计聚类方法(混合模型),假定所有的簇都来自球形高斯分布,具有不同的均值,但具有相同的协方差矩阵。DBSCAN不对数据的分布做任何锋历御假定。8)K均值DBSCAN和都寻找使用所有属性的簇,即它们都不寻找可能烂圆只涉及某个属性子集的簇。9)K均值可以发现不是明显分离的簇,即便簇有重叠也可以发现,但是DBSCAN会合并有重叠的簇。10)K均值算法的时间复杂度是O(m),而DBSCAN的时间复杂度是O(m^2),除非用于诸如低维欧几里得数据这样的特殊情况。11)DBSCAN多次运行产生相同的结果,而K均值通常使用随机初始化质心,不会产生相同的结果。12)DBSCAN自动地确定簇个数,对于K均值,簇个数需要作为参数指定。然而,DBSCAN必须指定另外两个参数:Eps(邻域半径)和MinPts(最少点数)。13)K均值聚类可以看作优化问题,即最小化每个点到最近质心的误差平方和,并且可以看作一种统计聚类(混合模型)的特例。DBSCAN不基于任何形式化模型。DBSCAN与OPTICS的区别:DBSCAN算法,有两个初始参数E(邻域半径)和minPts(E邻域最小点数)需要用户手动设置输入,并且聚类的类簇结果对这两个参数的取值非常敏感,不同的取值将产生不同的聚类结果,其实这也是大多数其他需要初始化参数聚类算法的弊端。为了克服DBSCAN算法这一缺点,提出了OPTICS算法(Ordering Points to identify the clustering structure)。OPTICS并 不显示的产生结果类簇银岩,而是为聚类分析生成一个增广的簇排序(比如,以可达距离为纵轴,样本点输出次序为横轴的坐标图),这个排序代表了各样本点基于密度 的聚类结构。它包含的信息等价于从一个广泛的参数设置所获得的基于密度的聚类,换句话说,从这个排序中可以得到基于任何参数E和minPts的DBSCAN算法的聚类结果。