【Q检验法】
Q检验法又叫做舍弃商法,是迪克森(W.J.Dixon)在1951年专为分析化学中少量观测次数(n<10)提出的一种简易判据式。
按以下步骤来确定可疑值的取舍:
(1)将各数据按递增顺数排列:X1,X2,X3,…,Xn-1,Xn。
(2)求出最大值与最小值的差值(极差)Xmax-Xmin.
(3)求出可疑值与其最相邻数据之间的差值的绝对值。
(4)求出Q(Q等于(3)中的差值除以(2)中的极差)。
(5)根据测定次数n和要求的置信水平(如95%)查表(见下)得到值
(6)判断:若计算Q>Q表,则舍去可疑值,否则应予保留。
【F检验法】
F检验法是英国统计学家Fisher提出的,主要通过比较两组数据的方差S2,以确定他们的精密度是否有显著性差异。至于两组数据之间是否存在系统误差,则在进行F检验并确定它们的精密度没有显著性差异之后,再进行t 检验。
样本标准偏差的平方,即:
两组数据就能得到两个S²值,
由表中f大和f小(f为自由度n-1),查得F表,
然后计算的F值与查表得到的F表值比较,如果
F < F表 表明两组数据没有显著差异;
F ≥ F表 表明两组数据存在显著差异。
【T检验法】
T检验法,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。
t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与f检验、卡方检验并列。t检验是戈斯特为了观测酿酒质量而发明的。戈斯特在位于都柏林的健力士酿酒厂担任统计学家,基于Claude Guinness聘用从牛津大学和剑桥大学出来的最好的毕业生以将生物化学及统计学应用到健力士工业程序的创新政策。戈斯特于1908年在Biometrika上公布t检验,但因其老板认为其为商业机密而被迫使用笔名(学生)。实际上,跟他合作过的统计学家是知道“学生”的真实身份是戈斯特的。
t 检验是用 t 分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与Z检验、卡方检验并列。
t检验的适用条件
(1) 已知一个总体均数;
(2) 可得到一个样本均数及该样本标准差;
(3) 样本来自正态或近似正态总体。
方差分析两两比较的方法很多:
LSD在方差分析结果p大于或小于0.05均可以进行比较,而且是特定的几组均数的比较,属于确认性研究。
SNK,即是q检验,方差分析结果需p小于0.05,是全面的比较,属于探索性研究。
t检验是定量资料服从正态分布,方差齐的两两比较,包括单样本的t检验,配对设计的t检验,完全随机设计的t检验,两独立样本的t检验。
q检验也称SNK法,是三组以及以上的定量资料服从独立正态方差齐进行完方差分析后,有差异,进行的两两比较
T检验法:应用t分布理论对正态总体或近似服从正态分布的总体当方差σ2未知时关于平均数的检验方法。
Q检验法:首先把数据按照从大到小排序,找出最大值与最小值,并计算可疑出其与相邻值的差值,并将其与最大值与最小值之差做商。得出Q与题目给出的要求的Q对比,要是大于,则是舍去,应该正确。