令x取x+1代入f(1+x)=-f(1-x)得,f(x+2)=-f(-x)∵函数y=f(x)为奇函数,∴f(x+2)=f(x),则函数是周期为2的周期函数,设0<x<1,则2<x+2<3,∵当x∈(2,3)时,f(x)=log(x-1),∴f(x)=f(x+2)=log(x+1),设-1<x<-0,则0<-x<1,由f(x)=-f(-x)得,f(x)=-log(-x+1),根据奇函数的性质和周期函数的性质画出函数的图象:由上图得,函数y=f(x)的图象关于点(k,0)(k∈Z)成中心对称;且函数y=|f(x)|的图象是将y=f(x)的图象在x轴下方的部分沿x轴对称过去,其他不变,则函数y=|f(x)|是以2为周期的周期函数;故①②③正确,而函数y=f(|x|)=,则图象如下图:由图得,图象关于y轴对称,故y=f(|x|)在(k,k+1)( k∈Z)上不是单调递增的,故④不正确,故答案为:①②③.
版权声明:文章由 百问九 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.baiwen9.com/answer/435235.html